
SysML – Vad och varför

• Bakgrund• Bakgrund
• Varför
• Vad

– Relation till UML
– Innehåll

• Struktur
• Beteende
• Krav

– Cross cutting constructs
• Allocations
• Profiles

• Diskussion



SysML

• Formell standard 2007-09-01

Bakgrund

• Formell standard 2007-09-01
• http://www.omg.org/spec/SysML/1.0/PDF
• Ursprung: ad/2003-03-41 (UML for Systems Engineering RFP) 

Relaterade standards: Relaterade standards: Relaterade standards: Relaterade standards: 
• OMG XMI 2.1 model interchange standard 
• ISO 10303 STEP AP233 data interchange standard for systems engineering tools. 



Varför SysML?

• SysML is intended to unify the diverse modeling languages currently used by 

Varför SysML

• SysML is intended to unify the diverse modeling languages currently used by 
systems engineers.

• Since SysML uses UML 2 as its foundation, systems engineers modeling with 
SysML and software engineers modeling with UML 2 will be able to collaborate 
on models of software-intensive systems. This will improve communication among 
the various stakeholders who participate in the systems development process and 
promote interoperability among modeling tools.



UML och SysML

Ingår ej i SysML:

Relationen till UML

Ingår ej i SysML:
• Klass 
• Composite structure
• Objekt
• Komponent
• Kommunikation
• Interaktionsöversikt
• Timing
• Deployment



UML’s metaklasser som används i SysML

Relationen till UML



Utökningar i SysML

The SysML packages extend UML as follows: 

Relationen till UML

The SysML packages extend UML as follows: 
• SysML::Model Elements refactors and extends the 

UML kernel portion of UML classes
• SysML::Blocks reuses structured classes from 

composite structures
• SysML::ConstraintBlocks extends Blocks to 

support parametric modeling
• SysML::Ports and Flows extends UML::Ports, 

UML::InformationFlows and SysML::Blocks
• SysML::Activities extends UML activities 
• SysML::Allocations extends UML dependencies
• SysML::Requirements extends UML classes and 

dependencies



Diagram i SysML

SysMLs innehåll



Blocks

• A Block is a modular unit that describes the structure of a system or element. • A Block is a modular unit that describes the structure of a system or element. 
• It may include both structural and behavioral features, such as properties and 

operations, that represent the state of the system and behavior that the system 
may exhibit. 

• SysML blocks are based on UML classes, as extended by UML composite 
structures. SysML value types are based on UML data types 



Block diagram - Exempel

• A block definition diagram is • A block definition diagram is 
based on the UML class 
diagram

• The variety of notations for 
associations has been reduced 
to simplify the burden of 
teaching, learning, and 
interpreting SysML diagrams for 
the systems engineering user. 

– n-ary associations 
– qualified associations



Internal block diagram  (ibd) 

An internal block diagram An internal block diagram 
is based on the UML 
composite structure 
diagram



Ibd istället för objektdiagram => 
context blocks

SysML internal block diagrams may be used to SysML internal block diagrams may be used to 
specify blocks with unique identification and 
property values. 
Figure 8.11 shows an example used to specify a 
unique vehicle with a vehicle identification 
number (VIN) and unique properties such as its 
weight, color, and horsepower. 
This concept is distinct from the UML concept of 
instance specifications in that it does not imply 
or assume any run-time semantic, and can also 
be applied to specify design configurations. 



Ports and flows

• Ports and Flows provides the semantics for defining how blocks and parts interact • Ports and Flows provides the semantics for defining how blocks and parts interact 
through ports and how items flow across connectors. 

• Flow ports enable flow of items between blocks and parts
• Standard ports enable invocation of services on blocks and parts. 



Item flows

• Item flows represent the things that flow between blocks and/or parts and across • Item flows represent the things that flow between blocks and/or parts and across 
associations or connectors. Whereas flow ports specify what “can” flow in or out 
of a block, item flows specify what “does” flow between blocks and/or parts in a 
particular usage context. 

• This important distinction enables blocks to be interconnected in different ways 
depending on its usage context. For example, a tank may include a flow port that 
can accept fluid as an input. In a particular use of the tank, “gasoline” flows 
across a connector into its flow port, and in another use of the tank, “water” flows 
across a connector into its flow port. The item flow would specify what “does” 
flow on the connector in the particular usage (e.g., gas, water) and the flow port 
specifies what can flow (e.g., fluid). This enables type matching between the item 
flows and between flow ports to assist in interface compatibility analysis. 



Exempel – standard ports



Exempel – flow ports, item flows



Parametric 
diagram

Parametric diagrams Parametric diagrams 
model a network of 
constraints on system 
properties to support 
engineering analysis, 
such as performance, 
reliability, and mass 
properties analysis.



Exempel – parametric diagram

A parametric diagram A parametric diagram 
is defined as a 
restricted form of 
internal block diagram.
the only connectors that 
may be shown are 
binding connectors 
connected to constraint 
parameters on at least 
one end. 



SysML’s stereotypade strukturella modellelement



Exempel – View, 
Viewpoint och conform

View – Representerar systemetView – Representerar systemet
Viewpoint – Regelverk
Conforms – Systemet följer 

regelverket

Överensstämmer med 
IEEE1471 - Recommended 
Practice for Architecture 
Description of Software-
Intensive Systems



Exempel – Rationale, problem



Att beskriva beteende med SysML

• Activities - defines the extensions to UML 2 activities, which represent the basic • Activities - defines the extensions to UML 2 activities, which represent the basic 
unit of behavior that is used in activity, sequence, and state machine diagrams. 
The activity diagram is used to describe the flow of control and flow of inputs and 
outputs among actions. 

• Interactions - defines the constructs for describing message based behavior used 
in sequence diagrams. 

• State Machines - describes the constructs used to specify state based behavior in 
terms of system states and their transitions. 

• Use Cases - describes behavior in terms of the high level functionality and uses of 
a system, that are further specified in the other behavioral diagrams referred to 
above. 



Utökat aktivitetsdiagram

• Activity modeling emphasizes the inputs, outputs, sequences, and conditions for • Activity modeling emphasizes the inputs, outputs, sequences, and conditions for 
coordinating other behaviors. It provides a flexible link to blocks owning those 
behaviors. 

• Activities as classes
• Timelines
• Control as data
• Continuous Systems 
• Probability



Activities as classes

• In UML 2.1, all behaviors including activities are classes, and their instances are • In UML 2.1, all behaviors including activities are classes, and their instances are 
executions. Behaviors can appear on block definition and class diagrams, and 
participate in generalization and associations. SysML clarifies the semantics of 
composition association between activities, and between activities and the type of 
object nodes in the activities, and defines consistency rules between these 
diagrams and activity diagrams. 





Timelines

• The simple time model in UML can be used to represent timing and duration • The simple time model in UML can be used to represent timing and duration 
constraints on actions in an activity model. These constraints can be notated as 
constraint notes in an activity diagram. Although the UML 2 timing diagram was 
not included in this version of SysML, it can complement SysML behavior 
diagrams to notate this information. More sophisticated SysML modeling 
techniques can incorporate constraint blocks to specify resource and related 
constraints on the properties of the inputs, outputs, and other system properties. 



Control as data – disabling actions

• SysML extends control in activity diagrams as follows. • SysML extends control in activity diagrams as follows. 
• In UML 2.1 Activities, control can only enable actions to start. SysML extends 

control to support disabling of actions that are already executing. This is 
accomplished by providing a model library with a type for control values that are 
treated like data

• A control value is an input or output of a control operator, which is how control 
acts as data. A control operator can represent a complex logical operation 



Stereotyper i aktivitetsdiagrammet



Continuous systems – rate of flow, replacing values & descarding 
values

SysML provides extensions that might be very loosely grouped under the term “continuous,” but SysML provides extensions that might be very loosely grouped under the term “continuous,” but 
are generally applicable to any sort of distributed flow of information and physical items through 
a system. These are: 
• Restrictions on the rate at which entities flow along edges in an activity, or in and out of 

parameters of a behavior. This includes both discrete and continuous flows, either of material, 
energy, or information. 

• Extension of object nodes, including pins, with the option for newly arriving values to replace 
values that are already in the object nodes SysML also extends object nodes with the option 
to discard values if they do not immediately flow downstream. These two extensions are useful 
for ensuring that the most recent information is available to actions by indicating when old 
values should not be kept in object nodes, and for preventing fast or continuously flowing 
values from collecting in an object node, as well as modeling transient values, such as 
electrical signals.



Probability

SysML introduces probability into activities as follows:SysML introduces probability into activities as follows:
• Extension of edges with probabilities for the likelihood that a value leaving the 

decision node or object node will traverse an edge.
• Extension of output parameter sets with probabilities for the likelihood that values 

will be output on a parameter set.



Continuous

Continuous rate is a special case Continuous rate is a special case 
of rate of flow where the 
increment of time between items 
approaches zero. It is intended to 
represent continuous flows that 
may correspond to water flowing 
through a pipe. 
It is independent from UML 
streaming. A streaming parameter 
may or may not apply to 
continuous flow, and a continuous 
flow may or may not apply to 
streaming parameters. 



Continuous – Monitor traction



Continuous



Interactions

SysML includes the Sequence Diagram only and excludes the Interaction Overview SysML includes the Sequence Diagram only and excludes the Interaction Overview 
Diagram and Communication Diagram, which were considered to offer significantly 
overlapping functionality without adding significant capability for system modeling 
applications. The Timing Diagram is also excluded due to concerns about its maturity 
and suitability for systems engineering needs. 



State machines

The UML concept of protocol state machines is excluded from SysML to reduce the The UML concept of protocol state machines is excluded from SysML to reduce the 
complexity of the language. The standard UML state machine concept (called 
behavior state machines in UML) are thought to be sufficient for expressing protocols. 



Use cases

Användningsfallsdiagrammet ingår i SysML



Cross cutting constructs

• Requirements• Requirements
• Allocations 
• Profiles



Requirements

A requirement is a A requirement is a 
stereotype of Class. 
Compound 
requirements can be 
created by using the 
nesting capability of 
the class definition 
mechanism. 





Stereotypade relationer och egenskaper

• Derive• Derive
• Related (property)
• Master/slave - copy
• Test cases
• Satisfy
• Verify
• Refine
• Trace
• Rationale



Derive

A DeriveReqt relationship is a dependency between two requirements in which a A DeriveReqt relationship is a dependency between two requirements in which a 
client requirement can be derived from the supplier requirement. For example, a 
system requirement may be derived from a business need, or lower-level 
requirements may be derived from a system requirement. As with other 
dependencies, the arrow direction points from the derived (client) requirement to 
the (supplier) requirement from which it is derived. 



Exempel



Related (property)

This stereotype is used to add properties to those elements that are related to This stereotype is used to add properties to those elements that are related to 
requirements via the various dependencies. The property values are shown using 
callout notation (i.e., notes) as shown in the diagram element table. 



Copy

• A Copy relationship is a dependency between a supplier requirement and a client • A Copy relationship is a dependency between a supplier requirement and a client 
requirement that specifies that the text of the client requirement is a read-only copy 
of the text of the supplier requirement. A Copy dependency created between two 
requirements maintains a master/slave relationship between the two elements for 
the purpose of requirements re-use in different contexts. When a Copy 
dependency exists between two requirements, the requirement text of the client 
requirement is a read-only copy of the requirement text of the requirement at the 
supplier end of the dependency. 



Copy



Test case

• A test case is a method for verifying a requirement is satisfied. • A test case is a method for verifying a requirement is satisfied. 

AttributesAttributesAttributesAttributes
/verifies: Requirement [*]
Derived from all requirements that are the supplier of a «verify» relationship for which 

this element is a client.





Satisfy

A Satisfy relationship A Satisfy relationship 
is a dependency 
between a 
requirement and a 
model element that 
fulfills the requirement.
The arrow direction 
points from the 
satisfying (client) 
model element to the 
(supplier) requirement 
that is satisfied. 



Verify

A Verify relationship A Verify relationship 
is a dependency 
between a 
requirement and a 
test case that can 
determine whether a 
system fulfills the 
requirement. 
The arrow direction 
points from the 
(client) test case to 
the (supplier) 
requirement. 



Requirements tables



Allocations

Allocation is the term used by systems engineers to denote the organized cross-association 

Allocations

Allocation is the term used by systems engineers to denote the organized cross-association 
(mapping) of elements within the various structures or hierarchies of a user model. 
The concept of “allocation” requires flexibility suitable for abstract system specification, rather 
than a particular constrained method of system or software design. System modelers often 
associate various elements in a user model in abstract, preliminary, and sometimes tentative ways. 
Allocations can be used early in the design as a precursor to more detailed rigorous specifications 
and implementations. The allocation relationship can provide an effective means for navigating 
the model by establishing cross relationships, and ensuring the various parts of the model are 
properly integrated. 
SysML does not try to limit the use of the term “allocation,” but provides a basic capability to 
support allocation in the broadest sense. It does include some specific subclasses of allocation for 
allocating behavior, structure, and flows. A typical example is the allocation of activities to blocks 
(e.g., functions to components). 



Allocate

Allocate is a dependency based on UML::abstraction. It is a mechanism for 

Allocations

Allocate is a dependency based on UML::abstraction. It is a mechanism for 
associating elements of different types, or in different hierarchies, at an abstract level. 
Allocate is used for assessing user model consistency and directing future design 
activity. It is expected that an «allocate» relationship between model elements is a 
precursor to a more concrete relationship between the elements, their properties, 
operations, attributes, or sub-classes. 

ConstraintsConstraintsConstraintsConstraints
A single «allocate» dependency shall have only one supplier (from), but may have 
one or many clients (to). If subtypes of the «allocate» dependency are introduced to 
represent more specialized forms of allocation, then they should have constraints 
applied to supplier and client as appropriate. 



Behavior allocations

Allocations



Flow allocations

Allocations



Structural allocations

Allocations



Allocations



Exempel

Allocations



Profiles and model libraries

• The Profiles package contains mechanisms that allow metaclasses from existing 

Profiles

• The Profiles package contains mechanisms that allow metaclasses from existing 
metamodels to be extended to adapt them for different purposes. 

• The stereotype is the primary mechanism used to create profiles to extend the 
metamodel. Stereotypes are defined by extending a metaclass, and then have 
them applied to the applicable model elements in the user model. 



Callout

The callout notation provides a mechanism for representing relationships between 

Profiles

The callout notation provides a mechanism for representing relationships between 
model elements that appear on different diagram kinds. In particular, they are 
used to represent allocations and requirements, such as the allocation of an 
activity to a block on a block definition diagram, or showing a part that satisfies a 
particular requirement on an internal block diagram. 



Obligatoriska ramar

Profiles



Diskussion

Positivt Negativt

Diskussion

Positivt Negativt


